mir-126-5p Promotes Cisplatin Sensitivity of Non-Small-Cell Lung Cancer by Inhibiting ADAM9

Author:

Liu Bo1,Wang Rui2,Liu Hongyan2ORCID

Affiliation:

1. Department of Laboratory, The First People’s Hospital of Lianyungang City, Lianyungang Jiangsu Province 222002, China

2. Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China

Abstract

Objective. The aim of the study was to investigate molecular mechanisms underlying the role of miR-126-5p in cisplatin (DDP) sensitivity of non-small-cell lung cancer (NSCLC). Methods. The expression of miR-126-5p and ADAM9 in NSCLC cancer tissues and adjacent tissues, cisplatin-sensitive and drug-resistant NSCLC patient tissues, human normal lung epithelial cells (BESA-2B), human lung adenocarcinoma cell lines A549 and H1560, and cisplatin-resistant mutant cell lines A549/DDP and H1560/DDP was detected by qRT-PCR. After overexpression of miR-126-5p or ADAM9 in A549/DDP and H1560/DDP, MTT and clone formation were used to detect the cell proliferation ability of each treatment group. Flow cytometry was used to detect changes in cell apoptosis. The protein expression of ADAM9 and key molecules of PTEN/PI3K/Akt pathways in cells was measured by western blot. Results. Compared with NSCLC adjacent tissues and NSCLC cisplatin-sensitive tissues, miR-126-5p expression was downregulated in NSCLC tissues and cisplatin-resistant NSCLC tissues and ADAM9 was upregulated. qRT-PCR further detected that miR-126-5p was downregulated in A549, H1560, and their cisplatin-resistant strains A549/DDP and H1560/DDP, while ADAM9 was upregulated. Moreover, overexpression of miR-126-5p inhibited A549/DDP and H1560/DDP cell proliferation and promoted cell apoptosis. The results of dual luciferase showed that miR-126-5p targeted and negatively regulated ADAM9. We also found that overexpression of ADAM9 could reverse the effects of miR-126-5p on NSCLC cell proliferation, apoptosis, and cisplatin sensitivity, and this effect may be achieved by inhibiting the activity of the PTEN/PI3K/Akt signaling pathway. Conclusion. Our data indicated that miR-126-5p may negatively regulate ADAM9 to promote the sensitivity of clinical DDP treatment of NSCLC and be a potential therapeutic target for NSCLC treatment.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3