Optimization of ATP System Based on Quantum Secure Communication and Its Tracking Control Strategy

Author:

Liu Jin1,Zhang Fan1,Cattani Carlo2ORCID,Yang Haima3ORCID,Wanqing Song1

Affiliation:

1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

2. Engineering School, DEIM University of Tuscia, Viterbo 1100, Italy

3. School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Abstract

In quantum key distribution experiments, ground motion is usually used to simulate satellite-based motion. The posture fluctuation of the platform affects the normal operation of the acquisition, tracking, and pointing (abbreviated as ATP) system seriously. To achieve the verification of the ground motion platform, the ATP parameters of the ground simulation motion system cannot be designed only according to the satellite-based ATP parameters. To solve this problem, a set of initial pointing system and inertial stabilization system is added to the simulation ATP system. This provides a technical solution for the ground simulation ATP system similar to the satellite-based motion platform. In the meanwhile, a tracking control strategy based on the identification method is proposed by establishing identification symbols. Compared with traditional proportion, integral, and differential (abbreviated as PID) control, this method overcomes the shortcoming of tentative modification of the control parameters and improves the stability and adaptability of the tracking control process. Tracking accuracy of ±0.1° is achieved under heavy-load conditions. This guarantees the success of the quantum key distribution (QKD) verification test of the ground motion platform.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3