α-Synuclein E46K Mutation and Involvement of Oxidative Stress in a Drosophila Model of Parkinson’s Disease

Author:

Reiszadeh Jahromi Samaneh1,Ramesh S. R.2,Finkelstein David I.3,Haddadi Mohammad4ORCID

Affiliation:

1. Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran

2. Department of Studies in Zoology, University of Mysore, Manasagangothri, Mysore, India

3. Parkinson’s Disease Laboratory, Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, University of Melbourne, Parkville, Australia

4. Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran

Abstract

Parkinson’s disease (PD) is an age-associated neurodegenerative condition in which some genetic variants are known to increase disease susceptibility on interaction with environmental factors inducing oxidative stress. Different mutations in the SNCA gene are reported as the major genetic contributors to PD. E46K mutation pathogenicity has not been investigated as intensive as other SNCA gene mutations including A30P and A53T. In this study, based on the GAL4-UAS binary genetic tool, transgenic Drosophila melanogaster flies expressing wild-type and E46K-mutated copies of the human SNCA gene were constructed. Western blotting, immunohistochemical analysis, and light and confocal microscopy of flies’ brains were undertaken along with the survival rate measurement, locomotor function assay, and ethanol and paraquat (PQ) tolerance to study α-synuclein neurotoxicity. Biochemical bioassays were carried out to investigate the activity of antioxidant enzymes and alterations in levels of oxidative markers following damages induced by human α-synuclein to the neurons of the transgenic flies. Overexpression of human α-synuclein in the central nervous system of these transgenic flies led to disorganized ommatidia structures and loss of dopaminergic neurons. E46K α-synuclein caused remarkable climbing defects, reduced survivorship, higher ethanol sensitivity, and increased PQ-mediated mortality. A noticeable decline in activity of catalase and superoxide dismutase enzymes besides considerable increase in the levels of lipid peroxidation and reactive oxygen species was observed in head capsule homogenates of α-synuclein-expressing flies, which indicates obvious involvement of oxidative stress as a causal factor in SNCAE46K neurotoxicity. In all the investigations, E46K copy of the SNCA gene was found to impose more severe defects when compared to wild-type SNCA. It can be concluded that the constructed Drosophila models developed PD-like symptoms that facilitate comparative studies of molecular and cellular pathways implicated in the pathogenicity of different α-synuclein mutations.

Funder

National Institute for Medical Research Development

Publisher

Hindawi Limited

Subject

Psychiatry and Mental health,Neurology (clinical),Neuroscience (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3