Experimental Studies on Shale Cracks and Permeability Evolution Based on Acoustic Emission Monitoring

Author:

Chen Hao12ORCID,Ge Hongkui12ORCID,Wang Xiaoqiong12ORCID,Wang Jianbo3ORCID,Wu Shan4ORCID

Affiliation:

1. Unconventional Oil and Natural Gas Institute, China University of Petroleum, Beijing 102249, China

2. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China

3. China University of Petroleum, Beijing at Karamay, Karamay 834000, China

4. Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen 518055, China

Abstract

The matrix permeability of shale reservoirs is extremely low. Therefore, massive volume fracturing is needed to form a complex crack network and get adequate sufficient capacity during the well completion. After fracturing, the effective stimulated reservoir volume (ESRV) is vital for developing shale reservoirs, mainly determined by stimulated reservoir volume (SRV) and the increase in permeability. Microseismic monitoring is widely used in the field to describe the crack shape and determine the SRV, to evaluate the stimulation effect. However, no studies have been conducted on the relationship between microseismic parameters and permeability. Thereby, we conducted uniaxial compression tests on Longmaxi shale samples and measured their changes in porosity and permeability before and after loading combining the microseismic monitoring under a laboratory scale (acoustic emission (AE)). Results show that porosity has little influence on the permeability before and after loading, while the propagation and connection of cracks are the most critical factors. As the loading stress increases, the crack volume and sample connectivity both grow. Besides, for the Longmaxi shale, when the stress is loaded to 30~50% of uniaxial compressive strength (UCS), the cracks start to propagate steadily (dilation), the permeability begins to increase rapidly, and percolation occurs, which indicates that the dilation point is closely related to the percolation threshold. The AE rate and accumulative ringing number both increase when it is larger than the percolation threshold value. The variation of AE characteristics can be used to identify the percolation threshold. Finally, the graphic model including AE parameters, crack, and permeability evolution is established based on the experimental results, which could help us understand the relationship between microseismic parameters and permeability and provide a methodological basis for the ESRV evaluation in the field.

Funder

Strategic Cooperation Technology Projects of CNPC and CUPB

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3