Asphaltene Deposition during CO2 Flooding in Ultralow Permeability Reservoirs: A Case Study from Changqing Oil Field

Author:

Rong-tao Li12ORCID,Xin-wei Liao1ORCID,Jian-dong Zou1,Chang-wang Gao3,Dong-feng Zhao4ORCID,Yuan-dong Zhang3,Xing-ze Zhou3

Affiliation:

1. China University of Petroleum, Beijing, China

2. Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, China

3. Petrochina Changqing Oilfield Branch, Xi’an, China

4. ZheJiang Ocean University, Zhoushan, China

Abstract

Asphaltene deposition is a common phenomenon during CO2 flooding in ultralow permeability reservoirs. The deposited asphaltene occupies the pore volume and decreases permeability, resulting in serious formation damage and pore well productivity. It is urgent to investigate the asphaltene deposition mechanisms, adverse effects, and preventive measures. However, few asphaltene deposition investigations have been systematically conducted by now. In this research, the asphaltene precipitation mechanisms and adverse effects were comprehensively investigated by using experimental and numerical methods. To study the effects of pressure, asphaltene content, and temperature on asphaltene precipitation qualitatively and quantitatively, the microscope visible detection experiment and the PVT cell static experiment were firstly conducted. The adverse effects on porosity and permeability resulted from asphaltene deposition were also studied by the core flooding experiment. Secondly, simulation models of asphaltene precipitation and deposition were developed and validated by experimental data. Finally, a case study from Changqing oil field was presented to analyze the asphaltene deposition characteristic and preventive measures. The experimental results showed that the asphaltene precipitation increases with the increased pressure before reaching the minimum miscible pressure (MMP) and gets the peak value around the MMP, while decreases slowly. The asphaltene precipitation increases with the increased temperature and asphaltene content. The variation trend of adverse effects on porosity and permeability resulted from asphaltene deposition is similar to that of asphaltene precipitation under the influence of pressure, asphaltene content, and temperature. The case study shows that the water-altering-gas (WAG) with high injection rate suffers more serious asphaltene deposition compared with the WAG with low injection rate, for the asphaltene precipitation increases as the increased pressure before reaching the MMP. The CO2 continuous injection with high injection rate is the worst choice, for low sweep efficiency and the most severe formation damage. Thus, the WAG with optimal injection rate was proposed to maintain well productivity and to reduce formation damage resulted from asphaltene deposition during developing ultralow permeability reservoirs.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3