A Two-Layer Architecture for Failure Prediction Based on High-Dimension Monitoring Sequences

Author:

Wang Xue1,Liu Fan1ORCID,Feng Yixin2,Zhao Jiabao3

Affiliation:

1. School of Management & Engineering, Nanjing University, Nanjing, China

2. Guotai Junan Securities, Shanghai, China

3. Department of Control and Systems Engineering, Nanjing University, Nanjing, China

Abstract

In recent years, the distributed architecture has been widely adopted by security companies with the rapid expansion of their business. A distributed system is comprised of many computing nodes of different components which are connected by high-speed communication networks. With the increasing functionality and complexity of the systems, failures of nodes are inevitable which may result in considerable loss. In order to identify anomalies of the possible failures and enable DevOps engineers to operate in advance, this paper proposes a two-layer prediction architecture based on the monitoring sequences of nodes status. Generally speaking, in the first layer, we make use of EXPoSE anomaly detection technique to derive anomaly scores in constant time which are then used as input data for ensemble learning in the second layer. Experiments are conducted on the data provided by one of the largest security companies, and the results demonstrate the predictability of the proposed approach.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference39 articles.

1. Using Virtualization to Improve Software Rejuvenation

2. Big data meet cyber-physical systems: a panoramic survey;R. Atat,2018

3. System performance monitoring of the ALICE Data Acquisition System with Zabbix

4. Opprentice: towards practical and automatic anomaly detection through machine learning;D. Liu

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3