Affiliation:
1. School of Science, Nantong University, Nantong 226019, China
2. School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China
Abstract
Radial basis function (RBF) has been widely used in many scientific computing and engineering applications, for instance, multidimensional scattered data interpolation and solving partial differential equations. However, the accuracy and stability of the RBF methods often strongly depend on the shape parameter. A coupled RBF (CRBF) method was proposed recently and successfully applied to solve the Poisson equation and the heat transfer equation (Appl. Math. Lett., 2019, 97: 93–98). Numerical results show that the CRBF method completely overcomes the troublesome issue of the optimal shape parameter that is a formidable obstacle to global schemes. In this paper, we further extend the CRBF method to solve the elastostatic problems. Discretization schemes are present in detail. With two elastostatic numerical examples, it is found that both numerical solutions of the CRBF method and the condition numbers of the discretized matrices are almost independent of the shape parameter. In addition, even if the traditional RBF methods take the optimal shape parameter, the CRBF method achieves better accuracy.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献