Huangkui Capsule Attenuates Lipopolysaccharide-Induced Acute Lung Injury and Macrophage Activation by Suppressing Inflammation and Oxidative Stress in Mice

Author:

Deng Jinfang1ORCID,He Zhenpeng2,Li Xiuru2,Chen Wei1,Yu Ziwen2,Qi Ting2,Xu Shuangyi2,Xu Zhengxin2ORCID,Fang Lei23ORCID

Affiliation:

1. Department of Pathlogy, First Medical Center of PLA General Hospital, Beijing 100853, China

2. Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China

3. Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University Medical College, Yangzhou 225009, China

Abstract

Background. Huangkui capsule (HKC) comprises the total flavonoid extract of flowers of Abelmoschus manihot (L.) Medicus. This study aimed to explore the effects of HKC on lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in mice and LPS-stimulated RAW 264.7 cells. Methods. Enzyme-linked immunosorbent assay, histopathology, spectrophotometry, and quantitative real-time polymerase chain reaction were used for the assessments. Statistical analysis was performed using a one-way analysis of variance. Results. LPS significantly increased lung inflammation, neutrophil infiltration, and oxidative stress and downregulated lung miR-451 expression. Treatment with HKC dramatically attenuated the lung wet/dry weight ratio, reduced the total cell count in the bronchoalveolar lavage fluid (BALF), and inhibited myeloperoxidase activity in the lung tissues 24 h after LPS challenge. Histopathological analysis demonstrated that HKC attenuated LPS-induced tissue oedema and neutrophil infiltration in the lung tissues. Additionally, the concentrations of tumour necrosis factor- (TNF-) α and interleukin- (IL-) 6 in BALF and IL-6 in the plasma reduced after HKC administration. Moreover, HKC could enhance glutathione peroxidase and catalase activities and upregulate the expression of miR-451 in the lung tissues. In vitro experiments revealed that HKC inhibited the production of nitric oxide, TNF-α, and IL-6 in LPS-induced RAW 264.7 cells and mouse primary peritoneal macrophages. Additionally, HKC downregulated LPS-induced transcription of TNF-α and IL-6 in RAW 264.7 cells. Conclusions. These findings suggest that HKC has anti-inflammatory and antioxidative effects that may protect mice against LPS-induced ALI and macrophage activation.

Funder

Science and Technology Projects Fund of Yangzhou City

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3