Health Monitoring of Automotive Suspensions: A LSTM Network Approach

Author:

Hu Haoju1,Luo Huan1ORCID,Deng Xiaoqiang1

Affiliation:

1. GAC Automotive Research & Development Center, Guangzhou 511434, China

Abstract

In the automotive industry, one of the critical issues is to develop a health monitoring system for condition assessment and remaining fatigue life estimation of key load-bearing components including automotive suspension. However, considering the difficulty to obtain expert knowledge and nonlinear dynamics in large-scale sensory data, health monitoring of automotive suspension is a challenging work. With the development of deep learning based sequence models in recent years, a long short-term memory (LSTM) network has been proved to capture long-term dependencies in time-series prediction without additional expert knowledge. In this paper, a novel health monitoring system based on a LSTM network is proposed to estimate the remaining fatigue life of automotive suspension. Specifically, first durability tests under various driving cycles are implemented to obtain sequential sensory data provided by common sensors on a test car. Then, a LSTM-based load identification method is designed to predict dynamic stress histories based on the available sensory data. Finally, the damages and remaining fatigue life of the suspensions are estimated by each time step. The experimental results prove that our model can achieve a better performance compared with other representative models.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3