Recovery of Palladium from Acidic Solution Using Polyethylenimine-Crosslinked Calcium Silicate Hydrate Derived from Oyster Shell Waste: Adsorption and Mechanisms

Author:

Kang Su Bin1ORCID,Wang Zhuo1ORCID,Won Sung Wook12ORCID

Affiliation:

1. Department of Ocean System Engineering, Gyeongsang National University, 2 Tongyeonghaean-ro, Tongyeong, Gyeongnam 53064, Republic of Korea

2. Department of Marine Environmental Engineering, Gyeongsang National University, 2 Tongyeonghaean-ro, Tongyeong, Gyeongnam 53064, Republic of Korea

Abstract

In this work, a new adsorbent with effective Pd(II) adsorption ability was synthesized using an oyster shell and fumed silica as the matrix materials and polyethyleneimine as the functional ligand. The adsorption performance of the developed adsorbent was evaluated for the recovery of palladium chloride ions (Pd(II)) from strong acid solutions. To understand the characteristics of the materials used in the study, samples were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray diffraction (XRD), and zeta potential analysis. Zeta potential analysis revealed that the isoelectric point of polyethylenimine-crosslinked calcium silicate hydrate (PEI-CSH) was 9.85. Isotherm experiments revealed that the maximum Pd(II) uptake estimated by the Langmuir model was 156.03 mg/g, which was 22.4 and 35.6 times higher than that of the oyster shell powder (OSP) and calcium silicate hydrate (CSH), respectively. The Pd(II) adsorption equilibrium was established in 180 minutes, according to kinetic experiments. These results suggested the possibility of Pd(II) recovery from oyster shell-based adsorbent. Through five adsorption and desorption cycles, the reusability of PEI-CSH was confirmed. PEI-CSH can therefore be considered a potential adsorbent for Pd(II) recovery.

Funder

National Research Foundation of Korea

Publisher

SAGE Publications

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3