Stability and Complexity of a Novel Three-Dimensional Environmental Quality Dynamic Evolution System

Author:

Zhao LiuWei12ORCID,Otoo Charles Oduro Acheampong2

Affiliation:

1. School of Business, Jiangsu University of Technology, Changzhou, Jiangsu 213000, China

2. Computational Experiment Center for Social Science, School of Management, Jiangsu University, Zhenjiang, Jiangsu 212013, China

Abstract

In this paper, a novel three-dimensional environmental quality dynamic system is introduced. Bayesian estimation was used to calibrate environmental quality variables, and Genetic algorithm (GA) optimized Levenberg-Marquardt Back Propagation (LM-BP) neural network method was used to effectively identify the system parameters for calibration of various variables and official data. The studies found that the effect of increasing investment in environmental protection on energy intensity and environmental quality is not obvious, and it also aggravates the economic instability. Adjustment of peak parameters of pollution emissions can accelerate the evolution of energy intensity and environmental quality to a stable speed and eventually stabilize with a certain value. But if the peak value of pollution emissions reaches too early, it will pose a certain threat to the environment. Although the speed of ecological environment self-repair is increased, it cannot effectively reduce energy intensity, improve environmental quality, and maintain economic growth; it can control the stability of the control system or effectively control pollution. Therefore, in order to improve the environmental quality, we need to take more measures in parallel, use more means and resources for environmental governance, and ultimately achieve “win-win” between environmental quality and economy.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3