Early Experience with Reduction of Unstable Pelvic Fracture Using a Computer-Aided Reduction Frame

Author:

Zhao Jing-Xin1ORCID,Zhang Li-Cheng1ORCID,Su Xiu-Yun1,Zhao Zhe2,Zhao Yan-Peng1,Sun Guo-Fei1,Zhang Li-Hai1ORCID,Tang Pei-Fu1ORCID

Affiliation:

1. Department of Orthopaedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China

2. Department of Orthopaedics, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 Li Tang Road, Changping District, Beijing 102218, China

Abstract

Purpose. The optimal closed reduction technique for unstable pelvic fractures remains controversial. The purpose of this study is to verify the effectiveness and report early experiences with the reduction of unstable pelvic fractures using a computer-aided pelvic reduction frame. Methods. From January 2015 to August 2016, a total of 10 patients with unilateral unstable pelvic fractures were included in this study. The surgical reduction procedure was based on the protocol of the computer-aided pelvic reduction frame that we proposed in a previous work. The quality of the reductions achieved using this system was evaluated with residual translational and rotational differences between the actual and virtual reduction positions of pelvis. The duration of the operation was recorded for quality control. Results. The mean times required to set up the frame, to complete the virtual surgery simulation, and to reduce the unstable pelvic fractures were 10.3, 20.9, and 7.5 min, respectively. The maximum residual translational and rotational displacements were less than 6.5 mm and 3.71 degrees, respectively. Conclusions. This computer-aided reduction frame can be a useful tool for the speedy and accurate reduction of unstable pelvic fractures. Further clinical studies should be conducted with larger patient samples to verify its safety and efficacy.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3