The Effect of Optical Crosstalk on Accuracy of Reflectance-Type Pulse Oximeter for Mobile Healthcare

Author:

Baek Hyun Jae1ORCID,Shin JaeWook1ORCID,Cho Jaegeol1ORCID

Affiliation:

1. Department of Medical and Mechatronics Engineering, Soonchunhyang University, Asan, Chungnam, Republic of Korea

Abstract

According to the theoretical equation of the pulse oximeter expressed by the ratio of amplitude (AC) and baseline (DC) obtained from the photoplethysmographic signal of two wavelengths, the difference of the amount of light absorbed depending on the melanin indicating the skin color is canceled by normalizing the AC value to the DC value of each wavelength. Therefore, theoretically, skin color does not affect the accuracy of oxygen saturation measurement. However, if there is a direct path for the light emitting unit to the light receiving unit instead of passing through the human body, the amount of light reflected by the surface of the skin changes depending on the color of the skin. As a result, the amount of crosstalk that varies depending on the skin color affects the ratio of AC to DC, resulting in errors in the calculation of the oxygen saturation value. We made crosstalk sensors and crosstalk-free sensors and performed desaturation experiments with respiratory gas control on subjects with various skin colors to perform oxygen saturation measurements ranging from 60 to 100%. Experimental results showed that there was no difference in the measurement error of oxygen saturation according to skin color in the case of the sensor which prevented crosstalk (−0.8824 ± 2.2859 for Asian subjects, 0.6741 ± 3.2822 for Caucasian subjects, and 0.9669 ± 2.2268 for African American subjects). However, a sensor that did not prevent crosstalk showed a large error in dark skin subjects (0.8258 ± 2.1603 for Asian subjects, 0.8733 ± 1.9716 for Caucasian subjects, and −3.0591 ± 3.9925 for African Americans). Based on these results, we reiterate the importance of sensor design in the development of pulse oximeters using reflectance-type sensors.

Funder

Soonchunhyang University

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Factores determinantes de la precisión de la oximetría de pulso: revisión bibliográfica;Revista Clínica Española;2024-05

2. Determining factors of pulse oximetry accuracy: a literature review;Revista Clínica Española (English Edition);2024-05

3. Pulse oximeter bench tests under different simulated skin tones;Medical & Biological Engineering & Computing;2024-04-24

4. Modification of oximeter ratio to reduce pigmentation bias in pulse oximetry;Design and Quality for Biomedical Technologies XVII;2024-03-13

5. Scaling of Algorithmic Bias in Pulse Oximetry with Signal-to-Noise Ratio;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3