Vibration Characteristics of Underground Structure and Surrounding Soil Underneath High Speed Railway Based on Field Vibration Tests

Author:

Zhou Biao12,Zhang Fengshou12ORCID,Xie Xiongyao12

Affiliation:

1. Key Laboratory of Geotechnical & Underground Engineering, Ministry of Education, Tongji University, Shanghai 200092, China

2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China

Abstract

A series of field vibration tests were carried out at an underground metro station underneath the high speed railway by installing accelerometers both on the side wall of the metro station and in the surrounding soil. Within the frequency domain of 0–200 Hz, the attenuation, transmission, and frequency response properties of vibration for both the underground structure and the surrounding soil were analyzed and compared. The attenuation index is found to be decreased with the increase of underground structure stiffness. The existence of damping and coupling effect of the surrounding soil, as well as the interference of axle spectrum from excitation sources, makes it very challenging to separate the frequency response characteristics of structures from soil at FFT (Fast Fourier Transform) spectrum. The combined NExT (Natural Excitation Technique) and HHT (Hilbert–Huang Transform) method are thus used to study the waveforms and propagation velocities of vibration waves in underground structure and surrounding soil. The wave types and their speeds are determined and used for evaluating the structural elastic modulus. Compared with the attenuation index or natural frequency, wave velocity is easier to be recognized, is sensitive to the change of the structural stiffness, and requires limited number of sensors in the field. Based on the properties of the vibration characteristics studied in this work, the wave velocity based method is recommended for the health monitoring of underground structures.

Funder

Shanghai Shentong Metro Co., Ltd

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3