Integrative Molecular Analyses of an Individual Transcription Factor-Based Genomic Model for Lung Cancer Prognosis

Author:

Yao Rong1,Zhou Leilei1,Guo Zhongying2,Zhang Dahong1,Zhang Tiecheng1ORCID

Affiliation:

1. Department of Medical Oncology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huai’an, 223300 Jiangsu, China

2. Department of Pathology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huai’an, 223300 Jiangsu, China

Abstract

Objective. Precision medicine with molecular profiles has revolutionized the management of lung cancer contributing to improved prognosis. Herein, we aimed to uncover the gene expression profiling of transcription factors (TFs) in lung cancer as well as to develop a TF-based genomic model. Methods. We retrospectively curated lung cancer patients from public databases. Through comparing mRNA expression profiling between lung cancer and normal specimens, specific TFs were determined. Thereafter, a TF genomic model was developed with univariate Cox regression and stepwise multivariable Cox analyses, which was verified through the GSE72094 dataset. Gene set enrichment analyses (GSEA) were presented. Downstream targets of TFs were predicted with ChEA, JASPAR, and MotifMap projects, and their biological significance was investigated through the clusterProfiler algorithm. Results. In the TCGA cohort, we proposed a TF-based genomic model, comprised of SATB2, HLF, and NPAS2. Lung cancer individuals were remarkably stratified into high- and low-risk groups. Survival analyses uncovered that high-risk populations presented unfavorable survival outcomes. ROCs confirmed the excellent predictive potency in patients’ prognosis. Additionally, this model was an independent prognostic indicator in accordance with multivariate analyses. The clinical implication of the model was well verified in an independent dataset. High risk score was in relation to carcinogenic pathways. Downstream targets were characterized by immune and carcinogenic activation. Conclusion. The proposed TF genomic model acts as a promising marker for estimation of lung cancer patients’ outcomes. Prospective research is required for testing the clinical utility of the model in individualized management of lung cancer.

Publisher

Hindawi Limited

Subject

Biochemistry, medical,Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3