Vibration Response Characteristics of Adjacent Tunnels under Different Blasting Schemes

Author:

Yu Jianxin12ORCID,Zhou Zhibin1,Zhang Xin13,Yang Xiaolin1,Wang Jinxing1ORCID,Zhou Lianhao1

Affiliation:

1. School of Civil Engineering, Henan Polytechnic University, Jiaozuo, Henan 454003, China

2. College of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China

3. China Railway 18 Bureau Group Co., Ltd., Tianjin 300222, China

Abstract

The vibration caused by the tunnel blasting and excavation will harm the surrounding rock and lining structure of the adjacent existing tunnels. This paper takes a two-lane large-span highway tunnel as the research object, conducts on-site monitoring tests on the impact of vibration caused by the blasting and excavation of new tunnels on the existing tunnels under different blasting schemes, and analyses in detail the three-dimension vibration velocity by different excavation footages. From the vibration speed, it is concluded that the influence of the existing tunnel of the newly built tunnel blasting team is affected by various factors, such as distance, free surface, charge, and blasthole distribution. With different blasting schemes, the greater the amount of charge, the greater the vibration caused by blasting. Existing tunnels correspond to the front of the tunnel, and the axial and radial vibration peaks are greater than the vertical. Although the cut segment uses a less amount of explosive and has a less blasthole layout, there is only one free surface. Because of the clamping of the rock, it is compared with the other two segments. The vibration caused is the largest. Although the peripheral holes are filled with a large amount of explosive, the arrangement of the blast holes is relatively scattered and there are many free surfaces. Hence, the vibration caused is the smallest. Corresponding to the back of the tunnel face, since there is no rock clamp, the vibration caused by the cut segment is the smallest, and the vibration caused by the peripheral segment and the floor segment is relatively large. The vibration caused by the front explosion side is significantly greater than the vibration caused by the back explosion side. The vibration velocity caused by the unit charge of 1.5 m footage is greater than that of the 3.0 m footage. The vibration velocity caused by the unit charge of the cut segment is the largest, and the vibration velocity caused by the peripheral segment and the floor segment is smaller. The research results provide a reference for the blasting control of similar engineering construction.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference34 articles.

1. Study of blasting vibration influence on close-spaced tunnel;M. N. Wang;Rock and Soil Mechanics,2004

2. Effect of blasting in double line tunnel on existing tunnel;Y. S. Shen;Chinese Journal of Underground Space and Engineering,2009

3. Experimental study on blasting vibration influence on nearby tunnels with small interval;L. J. Chen;Blasting,2000

4. Study on effect of tunnelling blasting on existing adjacent tunnel

5. Analysis of Vibration Characteristics of New Subway Tunnel Undercrossing the Existing Highway Under Blasting Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3