Risk Evaluation Study of Urban Rail Transit Network Based on Entropy-TOPSIS-Coupling Coordination Model

Author:

Gao Fawen12ORCID,Zhang Zhibin1ORCID,Shang Mengxing3ORCID

Affiliation:

1. College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China

2. School of Architecture and Urban Planning, Lanzhou Jiaotong University, Lanzhou, China

3. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

Abstract

As one of the core systems of a city, urban rail transit plays a pivotal role in ensuring the safe, rational, and efficient operation of the city. Therefore, it is of great significance to ensure the safe operation of urban rail transit network to improve the operation efficiency and economic level of the city. The prerequisite to ensure the safety of urban rail transit network is whether the risk situation of urban rail transit network can be reasonably and accurately evaluated. In order to evaluate the risk level of urban rail transit network reasonably and accurately, firstly, with full consideration of the characteristics of urban rail transit, the risk evaluation system of urban rail transit network was established in this paper based on the three levels of regional economy, social resources, and rail transit. Secondly, based on the entropy-TOPSIS-coupling coordination model, the single-factor influence and multifactor coupling influence in the index system are calculated and analyzed, respectively; thus the coupling coordination degree of urban rail transit system is obtained, so as to quantitatively evaluate and analyze the risk situation in urban rail transit network. Finally, based on the actual data of Shanghai from 2000 to 2016, the case simulation and analysis are carried out. The results show that the two indicators of regional economy and social resources are more likely to affect the safety state of urban rail transit. At the same time, the safety factor of urban rail transit coupling system is increasing year by year and gradually develops from disorder to order. This is more in line with current urban rail transit condition, demonstrating the rationality and accuracy of the entropy-TOPSIS-coupling coordination model proposed in this study.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Reference19 articles.

1. Evaluation of rail transportation planning based on hierarchical analysis;Y. Song;Modern Transportation Technology,2011

2. A comprehensive evaluation of urban rail transit network planning based on physical element entropy weight model;Li Jing;Journal of Engineering Management,2013

3. Model and method for comprehensive evaluation of urban rail transit line network planning;C. Su;Logistics Science and Technology,2010

4. Research on urban rail transit safety evaluation based on game theory;X. Liu;Science and Technology Innovation,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3