Recommendations and Protocols for the Use of the Isotope Ratio Infrared Spectrometer (Delta Ray) to Measure Stable Isotopes from CO2: An Application to Volcanic Emissions at Mount Etna and Stromboli (Sicily, Italy)

Author:

Boudoire G.12ORCID,Grassa F.1,Giuffrida G.1,Liuzzo M.1

Affiliation:

1. Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Via Ugo La Malfa 153, 90146 Palermo, Italy

2. Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, 6 avenue Blaise Pascal, 63178 Aubière, France

Abstract

Among major volatiles released from the Earth’s interior, CO2 is an important target for the international community. The interest is keenly motivated by the contribution of CO2 in the Earth’s carbon budget and its role on past, current, and future climate dynamics. In particular, the isotopic signature of CO2 is fundamental to characterize the source of this gas and its evolution up to the atmosphere. The recent development of new laser-based techniques has marked an important milestone for the scientific community by favoring both high-frequency and in situ stable isotope measurements. Among them, the Delta Ray IRIS (Thermo Scientific Inc., Waltham, USA) is one of the most promising instruments thanks to its high precision, its limited interferences with other gaseous species (such as H2S and/or SO2), and its internal calibration procedure. These characteristics and the relative easiness to transport the Delta Ray IRIS have encouraged its use on the field to analyze volcanic CO2 emissions in recent years but often with distinct customized protocols of measurements. In this study, various tests in the laboratory and on the field have been performed to study the dependence of CO2 isotope measurements on analytical, instrumental, and environmental conditions. We emphasize the exceptional ability of the Delta Ray IRIS to perform isotope measurements for a large range of CO2 concentration (200 ppm–100%) thanks to a dilution system and to get a reliable estimation of the real CO2 content from the diluted one. These tests lead to point out major recommendations on the use of Delta Ray IRIS and allow the development of adapted protocols to analyze CO2 emissions like in volcanic environments.

Funder

Fondo Sociale Europeo

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3