Tuning Frontiers of Efficiency in Tissue P Systems with Evolutional Communication Rules

Author:

Orellana-Martín David1ORCID,Valencia-Cabrera Luis1ORCID,Song Bosheng2ORCID,Pan Linqiang3ORCID,Pérez-Jiménez Mario J.1ORCID

Affiliation:

1. Research Group on Natural Computing, Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012, Sevilla, Spain

2. College of Information Science and Engineering, Hunan University, Changsha 410082, China

3. Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, Institute of Artificial Intelligence, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China

Abstract

Over the last few years, a new methodology to address the P versus NP problem has been developed, based on searching for borderlines between the nonefficiency of computing models (only problems in class P can be solved in polynomial time) and the presumed efficiency (ability to solve NP-complete problems in polynomial time). These borderlines can be seen as frontiers of efficiency, which are crucial in this methodology. “Translating,” in some sense, an efficient solution in a presumably efficient model to an efficient solution in a nonefficient model would give an affirmative answer to problem P versus NP. In the framework of Membrane Computing, the key of this approach is to detect the syntactic or semantic ingredients that are needed to pass from a nonefficient class of membrane systems to a presumably efficient one. This paper deals with tissue P systems with communication rules of type symport/antiport allowing the evolution of the objects triggering the rules. In previous works, frontiers of efficiency were found in these kinds of membrane systems both with division rules and with separation rules. However, since they were not optimal, it is interesting to refine these frontiers. In this work, optimal frontiers of the efficiency are obtained in terms of the total number of objects involved in the communication rules used for that kind of membrane systems. These optimizations could be easier to translate, if possible, to efficient solutions in a nonefficient model.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3