Analysis of Pre- and during COVID-19 Mixed Load Models on Unbalanced Radial Distribution System Using a New Metaphor-Less Rao Optimization

Author:

Bhadoriya Jitendra Singh1ORCID,Gupta A. R.12,Khan Baseem34ORCID

Affiliation:

1. Department of Electrical Engineering, National Institute of Technology, Kurukshetra, Haryana, India

2. Shri Phanishwar Nath Renu Engineering College Araria, DST Govt of Bihar, Araria, India

3. Department of Electrical and Computer Engineering, Hawassa University, Hawassa 05, Ethiopia

4. Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico

Abstract

An unbalanced electrical distribution system (DS) with radial construction and passive nature suffers from significant power loss. The unstable load demand and poor voltage profile resulted from insufficient reactive power in the DS. This research implements a unique Rao algorithm without metaphors for the optimal allocation of multiple distributed generation (DG) and distribution static compensators (DSTATCOM). For the appropriate sizing and placement of the device, the active power loss, reactive power loss, minimum value of voltage, and voltage stability index are evaluated as a multiobjective optimization to assess the device’s impact on the 25-bus unbalanced radial distribution system. Various load models, including residential, commercial, industrial, battery charging, and other dispersed loads, were integrated to develop a mixed load model for examining electrical distribution systems. The impact of unpredictable loading conditions resulting from the COVID-19 pandemic lockdown on DS is examined. The investigation studied the role of DG and DSTATCOM (DGDST) penetration in the electrical distribution system for variations in different load types and demand oscillations under the critical emergency conditions of COVID-19. The simulation results produced for the mixed load model during the COVID-19 scenario demonstrate the proposed method’s efficacy with distinct cases of DG and DSTATCOM allocation by lowering power loss with an enhanced voltage profile to create a robust and flexible distribution network.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3