Evaluation of a High-Accuracy Indoor-Positioning System with Wi-Fi Time of Flight (ToF) and Deep Learning

Author:

Perdana Doan1ORCID,Indra Tanaya I Made Arya2,Marwan Abdul Aziz3ORCID,Akhyar Fityanul4ORCID

Affiliation:

1. Advanced Creative Networks Research Center in Telkom University, Kabupaten Bandung, Indonesia

2. PT. Bale Teknologi Bali, Denpasar, Indonesia

3. Department of Electrical Engineering, Telkom University, Kabupaten Bandung, Indonesia

4. Intelligence System Laboratory, Telkom University, Kabupaten Bandung, Indonesia

Abstract

This article proposes the use of Wi-Fi ToF and a deep learning approach to build a cheap, practical, and highly-accurate IPS. To complement that, rather than using the classic geometrical approach (such as multilateration), it uses a more data-driven approach, i.e., the location fingerprinting technique. The fingerprint of a location, in this case, is a set of Wi-Fi ToFs between the target device and an access point (AP). Therefore, the number of APs in the area dictates the set size. The location fingerprinting technique requires a collection of fingerprints of various locations in the area to build a reference database or map. This database or map contains the information used to carry out the main task of the location fingerprinting technique, namely, estimating the position of a device based on its location fingerprint. For that task, we propose using a fully connected deep neural network (FCDNN) model to act as a positioning engine. The model is given a location fingerprint as its input to produce the estimated location coordinates as its output. We conduct an experiment to analyze the impact of the available AP pair in the dataset, from 1 unique AP pair, 2 AP pairs, and more, using WKNN and FCDNN to compare their performance. Our experimental results show that our IPS, DeepIndoor, can achieve an average positioning error or mean square error of 0.1749 m, and root mean square error of 0.5740 m in scenario 3, where 1–10 AP pairs or the raw dataset is used.

Funder

FCT/MCTES

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3