A New Stress Field Model for Semiclosed Crack under Compression considering the Influence of T -Stress

Author:

Feng Mingyu1ORCID,Zhou Xiaoguang2ORCID,Zhang Yanbin1ORCID,Wu Saifeng3

Affiliation:

1. School of Civil Engineering, Beijing Jiaotong University, Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing 100044, China

2. Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China

3. School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China

Abstract

Compression is a typical stress condition for cracks in deep-water structures, where the cracks tend to close from a nonclosed state, due to a certain gap that exists between the surfaces on both sides of cracks. The stress field models around the crack have been established in previous studies, while the crack surfaces are simply assumed in a nonclosed or full-closed state. In fact, the cracks inside deep-water structures are usually in a semiclosed state, leaving the reliability of calculation results in risk. To reflect the actual state of crack, a comprehensive stress field model around the semiclosed crack is established based on the complex potential theory, and the stress intensity factor K II at the crack tip related to the closure amount of crack surfaces, deep-water pressure, friction coefficient in the closed region, and crack inclination angle is derived. The analytical solution of the stress field around the semiclosed crack contains three T -stress components, i.e., T x , T y , and T x y . The rationality and effectiveness of the proposed stress field model are verified by the isochromatic fringe patterns around the crack obtained from the photoelastic experiment. It reveals that the proposed model can reasonably predict the evolution of the stress field with the closure amount of crack under constant and variable stress conditions.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3