CCPIN: Classification and Combine Parallel Interaction Network for CTR Prediction

Author:

Tan Guosheng1ORCID,Yang Changchun1ORCID,Jiang Jiaming1ORCID

Affiliation:

1. School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, Jiangsu 213164, China

Abstract

The study of feature interactions in deep neural network-based recommender systems has been a popular research area in industry and academic circles. However, the vast majority of parallel CTR prediction models do not classify the input features but instead feed them into the model. This way not only reduces the accuracy of the model but also ignores the effectiveness of learning individual feature interactions. In addition, the majority of parallel CTR prediction models only focus on the submodel intersections of their parallel models, ignoring the importance of the external intersection. To address the shortcomings, this paper proposes the CCPIN model on the basis of the XdeepFM model. In the CCPIN model, it can not only learn different category feature interactions but also learn individual feature interactions. Through the classification gate, adaptive features are maximized to improve the performance of the submodel. Through the Combine layer, the interaction of submodel results can be learned while retaining the original output. Through comparison experiments with other models on two datasets, it is demonstrated that the CCPIN model has an average increase of 0.93% in AUC and a decrease of 0.47% in Logloss compared to other models.

Funder

2021 Jiangsu Postgraduate Research and Innovation Plan

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3