Affiliation:
1. Department of Pediatrics, Maternal and Child Health Hospital of Shandong Province, Jinan, Shandong 250014, China
2. Department of Common Pediatric, Shandong Cao County People’s Hospital, Heze, Shandong 250014, China
Abstract
Osthole, a coumarin compound derived from Fructus Cnidii, exerts anti-inflammatory effects in an asthma model. But the effect of osthole on epithelial injury and epithelial-mesenchymal transition (EMT) in asthma remains unclear. 16HBE cells were incubated with TGF-β1 with or without osthole in vitro. Ovalbumin (OVA)-induced asthmatic mouse model was established in vivo. Cell counting kit-8 was carried out to evaluate the viability of 16HBE cells. The impact of osthole on TGF-β1-evoked cell apoptosis and EMT process was measured by flow cytometry based on Annexin V-FITC/PI staining, transwell assay, immunofluorescence, and Western blot. The regulatory role of osthole in TGF-β1/Smad and p38, ERK1/2, and JNK MAPK signaling was detected via Western blot. Osthole treatment significantly suppressed TGF-β1-induced 16HBE cell apoptosis, verified by a reduced percentage of apoptotic cells, decreased expression of proapoptotic proteins (cleaved-caspase3 and Bax), and enhanced antiapoptotic factor (Bcl-2) expression. In addition, the promotive impact of TGF-β1 on the migration of 16HBE cells was reversed by osthole, accompanied by elevated E-cadherin expression and reduced Snail and N-cadherin expression. The activation of the Smad2/3 and MAPKs pathway evoked by TGF-β1 was inhibited by osthole in 16HBE cells. We also found that osthole mitigated airway epithelium injury and subepithelial fibrosis in OVA-challenged asthmatic mice in vivo. Osthole could mitigate TGF-β1-induced epithelial cell injury and EMT process by suppressing the activation of MAPK and Smad2/3 pathways separately. Our present study showed a new insight into understanding the underlying mechanism of osthole injury on epithelium injury and subepithelial fibrosis in airway remodeling. Asthma, epithelial injury, epithelial-mesenchymal transition, and airway remodeling are the effects of osthole on airway remodeling.
Subject
Health Informatics,Biomedical Engineering,Surgery,Biotechnology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献