Energy Aware Optimal Resource Allocation in Backhaul Constraint Wireless Networks: A Two Base Stations Scenario

Author:

Gao Yuan12ORCID,Xue Peng3,Li Yi14,Yu Hongyi2,Wang Xianfeng2,Gao Shihai2

Affiliation:

1. State Key Laboratory on Microwave and Digital Communications, National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China

2. Information Science and Technology Institute, Zhengzhou 450002, China

3. Naval Aeronautical and Astronautical University, Yantai 264000, China

4. The High School Affiliated to Renmin University of China, Beijing 100030, China

Abstract

In future wireless communication systems, the capacity constrained backhaul gradually becomes bottleneck both in spectrum efficiency and energy efficiency, especially in joint processing of LTE-Advanced. This paper addresses the issue of energy aware resource allocation with limited backhaul capacity in uplink cooperative reception, where two base stations (BSs) equipped with single-antenna each serving multiple users with single-antenna via multicarrier are considered. We propose a novel energy efficient cooperative scheme based on compress-and-forward and user pairing to solve the problem in two base stations scenario. In order to maximize system throughput and increase energy efficiency under the limited backhaul capacity constraint, we formulate the joint optimization problem of user pairing, subcarrier mapping, and backhaul capacity sharing between different pairs (subcarriers). An energy efficient algorithm based on alternating optimization strategy and perfect mapping is proposed to solve this mixed integer programming problem. Simulations show that this allocation algorithm can improve the system capacity and energy efficiency significantly compared with the blind alternatives.

Funder

National Basic Research Program of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3