ARDST: An Adversarial‐Resilient Deep Symbolic Tree for Adversarial Learning

Author:

Zhuo Sheng DaORCID,Wu Di,Hu Xin,Wang YuORCID

Abstract

The advancement of intelligent systems, particularly in domains such as natural language processing and autonomous driving, has been primarily driven by deep neural networks (DNNs). However, these systems exhibit vulnerability to adversarial attacks that can be both subtle and imperceptible to humans, resulting in arbitrary and erroneous decisions. This susceptibility arises from the hierarchical layer‐by‐layer learning structure of DNNs, where small distortions can be exponentially amplified. While several defense methods have been proposed, they often necessitate prior knowledge of adversarial attacks to design specific defense strategies. This requirement is often unfeasible in real‐world attack scenarios. In this paper, we introduce a novel learning model, termed “immune” learning, known as adversarial‐resilient deep symbolic tree (ARDST), from a neurosymbolic perspective. The ARDST model is semiparametric and takes the form of a tree, with logic operators serving as nodes and learned parameters as weights of edges. This model provides a transparent reasoning path for decision‐making, offering fine granularity, and has the capacity to withstand various types of adversarial attacks, all while maintaining a significantly smaller parameter space compared to DNNs. Our extensive experiments, conducted on three benchmark datasets, reveal that ARDST exhibits a representation learning capability similar to DNNs in perceptual tasks and demonstrates resilience against state‐of‐the‐art adversarial attacks.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Guangdong Province

Guangzhou Municipal Science and Technology Program key projects

Guangzhou University

Basic and Applied Basic Research Foundation of Guangdong Province

Jinan University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3