Contrastive Learning with Edge‐Wise Augmentation for Rumor Detection

Author:

Liu NanORCID,Zhang FengliORCID,Gao QiangORCID,Chen XueqinORCID

Abstract

Exploring and modeling the spreading process of rumors have shown great potential in improving rumor detection performance. However, existing propagation‐based rumor detection models often overlook the uncertainty of the underlying propagation structure and typically require a large amount of labeled data for training. To address these challenges, we propose a novel rumor detection framework, namely, the Uncertainty‐Inference Contrastive Learning (UICL) model. Specifically, UICL innovatively incorporates an edge‐wise augmentation strategy into the general contrastive learning framework, including an edge‐inference augmentation component and an EdgeDrop augmentation component, which primarily aim to capture the edge uncertainty of the propagation structure and alleviate the sparsity problem of the original dataset. A new negative sampling strategy is also introduced to enhance contrastive learning on rumor propagation graphs. Furthermore, we use labeled data to fine‐tune the detection module. Our experiments, conducted on three real‐world datasets, demonstrate that UICL can not only significantly improve detection accuracy but also reduce the dependency on labeled data compared to state‐of‐the‐art baselines.

Funder

National Natural Science Foundation of China

Sichuan Province Science and Technology Support Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3