Teachers’ Teaching Ability Promotion Strategies Based on Lightweight Deep Learning Combined with Target Detection Algorithm

Author:

Jin Yuqian1ORCID

Affiliation:

1. Department of Faculty Affairs & Faculty Development, Xi’an Technological University, Xi’an, Shaanxi 710072, China

Abstract

With the popularization of standardized classrooms in colleges and universities, it is possible to collect video data of students’ class status through the camera device in the classroom. With abundant video data sources, it is easy to obtain big data of students’ class status images. Unstructured video big data is a topic worthy of research in improving teaching quality. First, the current teaching ability of teachers in colleges and universities is investigated, and its problems are found. Then, the You Only Look Once (YOLO) network in the object detection network is mainly studied. The deficiencies in the network structure are further explored and optimized. It is used in real classroom scenarios as well as on student expression detection problems. Finally, the proposed scheme is tested. The test results show that at present, 20% and 38% of teachers in higher vocational colleges think that they are “dissatisfied” with their classroom teaching and practical guidance ability. And 38% of teachers wanted to improve the bad situation. The accuracy of the proposed model for student expression detection is higher than that of faster-region convolutional neural network and mask-region convolutional neural network by more than 8%, higher than the YOLO v3 model by more than 4%, and higher than YOLO v3 Tiny model above 6%. The proposed model provides some ideas for the application of deep learning technology in the improvement of teachers’ teaching ability.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3