Method for Quantum Denoisers Using Convolutional Neural Network

Author:

Kim Bong-Hyun1ORCID,Madhavi S.2

Affiliation:

1. School of Software, Computer Engineering Major, Seowon University 377-3, Musimseo-ro, Seowon-gu, Cheongju-si, Chungcheongbuk-do 28674, Republic of Korea

2. Computer Science and Engineering Department, PVP Siddhartha Institute of Technology, Kanuru, Andhra Pradesh, India

Abstract

In many applications of quantum information science, high-dimensional entanglement is needed. Quantum teleportation is used for transferring information from one place to another using Einstein–Podolsk–Rosen pairs (EPR) and two classical bits of communication in a channel. Since we cannot produce multiple copies of an unknown state for amplification, we will generate multiple EPR pairs. However, after the distribution of the EPR pairs, they will have decreased fidelity with the ideal EPR state. So, to maintain the quantum states and maximize the quantification of the entanglement without losing the strength of the states, we propose to denoise the channel for a few types of noise. We created a random noise source and filtered out the irrelevant information without affecting the relevant information encoded in the quantum states. The proposed model is used for successful denoising of GHZ states from spin flips and bit flip errors. Much of the research work is not carried out by using machine-language-based neural networks for noise-reduction in quantum channels. In this paper, we propose a denoiser called quantum denoiser CNQD, which uses a feedforward convolution neural network model. We tuned our model with highly entangled GHZ states with zero phases and phase between [0, ∏] mixed with different kinds of noise. Finally, the proposed model can be used for optimal quantum communication via noisy quantum channels using GHZ states.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Retracted: Method for Quantum Denoisers Using Convolutional Neural Network;Computational Intelligence and Neuroscience;2023-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3