Score Prediction of Sports Events Based on Parallel Self-Organizing Nonlinear Neural Network

Author:

Ling Junyao1ORCID

Affiliation:

1. Xi’an University of Finance and Economics, Xi’an 710100, Shaanxi, China

Abstract

This paper introduces the basic concepts and main characteristics of parallel self-organizing networks and analyzes and predicts parallel self-organizing networks through neural networks and their hybrid models. First, we train and describe the law and development trend of the parallel self-organizing network through historical data of the parallel self-organizing network and then use the discovered law to predict the performance of the new data and compare it with its true value. Second, this paper takes the prediction and application of chaotic parallel self-organizing networks as the main research line and neural networks as the main research method. Based on the summary and analysis of traditional neural networks, it jumps out of inertial thinking and first proposes phase space. Reconstruction parameters and neural network structure parameters are unified and optimized, and then, the idea of dividing the phase space into multiple subspaces is proposed. The multi-neural network method is adopted to track and predict the local trajectory of the chaotic attractor in the subspace with high precision to improve overall forecasting performance. During the experiment, short-term and longer-term prediction experiments were performed on the chaotic parallel self-organizing network. The results show that not only the accuracy of the simulation results is greatly improved but also the prediction performance of the real data observed in reality is also greatly improved. When predicting the parallel self-organizing network, the minimum error of the self-organizing difference model is 0.3691, and the minimum error of the self-organizing autoregressive neural network is 0.008, and neural network minimum error is 0.0081. In the parallel self-organizing network prediction of sports event scores, the errors of the above models are 0.0174, 0.0081, 0.0135, and 0.0381, respectively.

Funder

Xi’an University of Finance and Economics

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3