Analysis on the Vertical Additional Force of Shaft and Drainage Settlement Characteristics of Topsoil Containing Multiaquifers

Author:

Han Tao1ORCID,Luo Tingting1ORCID,Zhang Tao1ORCID,Yan Yong2ORCID,Hu Xiaoxu3ORCID,Yan Tao1ORCID,Yang Weihao1ORCID

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. Shandong Tangkou Coal Industry Co. Ltd., Jining 272055, China

3. Xinwen Mining Group Co. Ltd., Taian 271233, China

Abstract

The vertical additional force induced by the drainage consolidation settlement of the topsoil is one of the main factors for shaft wall fracture. To date, the number of aquifers of topsoil rises with the depth increasing of shaft, which would lead to a more serious additional force effect. Thus, studying the vertical additional force law of the shaft when drainage settlement occurs in its surrounding topsoil containing multiaquifers is of great significance to predicting the shaft stress and guarantying shaft safety. In this study, mechanical analysis of the topsoil with the shaft crossing multiaquifer was carried out, and the settlement of each aquifer and aquiclude was calculated by separating the single-slope drainage consolidation and the double-slope drainage consolidation. Then, the calculation model of vertical additional force was established due to the settlement caused by the reaction of the additional force on the topsoil containing multiaquifers, and the calculation model of shaft wall stress was also developed. Verification of this model was conducted by comparing the filed measurement data of the shaft wall strain and the theoretical data calculated by the stress model. Finally, the effect laws of drainage velocity, central aquifer thickness, location, and number on the additional force were obtained and analysed. This paper is expected to provide theoretical support for predicting the additional force and shaft wall stress during its service time.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3