Effect of Flow Attack Angle of V-Ribs Vortex Generators in a Square Duct on Flow Structure, Heat Transfer, and Performance Improvement

Author:

Boonloi Amnart1

Affiliation:

1. Department of Mechanical Engineering Technology, College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

Abstract

A numerical investigation has been carried out to examine the periodic laminar flow and heat transfer characteristics in a three-dimensional isothermal wall square duct with 20° inline V-ribs. The computations are based on the finite volume method, and the SIMPLE algorithm has been implemented. The fluid flow and heat transfer characteristics are presented for Reynolds numbers based on the hydraulic diameter of the square duct ranging from 100 to 2000. To generate main streamwise vortex flows through the tested section, V-ribs with an attack angle of 20° are mounted in tandem with inline arrangement, pointing downstream (V-Downstream) and pointing upstream (V-Upstream) placed on both the upper and lower walls. Effects of different blockage ratio (b/H, BR) with a single pitch ratio (P/H, PR) of 1 on heat transfer, pressure loss, and performance in the ribbed tube are studied. Apparently in each of the main vortex flows, streamwise twisted vortex flows can induce impinging flows on the walls of the interbaffle cavity leading to drastic increase in heat transfer rate over the square duct. In addition, the rise in the V-baffle height results in the increase in the Nusselt number and friction factor values. The computational results show that the optimum thermal enhancement factor is about 4.2 atBR=0.20and 0.15 for the V-Downstream and V-Upstream, respectively.

Funder

College of Industrial Technology

Publisher

Hindawi Limited

Subject

Computer Science Applications,General Engineering,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3