Damage Identification of Bridge Based on Modal Flexibility and Neural Network Improved by Particle Swarm Optimization

Author:

Liu Hanbing1,Song Gang1,Jiao Yubo1,Zhang Peng1,Wang Xianqiang1

Affiliation:

1. College of Transportation, Jilin University, No. 5988 Renmin Street, Changchun 130025, China

Abstract

An approach to identify damage of bridge utilizing modal flexibility and neural network optimized by particle swarm optimization (PSO) is presented. The method consists of two stages; modal flexibility indices are applied to damage localizing and neural network optimized by PSO is used to identify the damage severity. Numerical simulation of simply supported bridge is presented to demonstrate feasibility of the proposed method, while comparative analysis with traditional BP network is for its superiority. The results indicate that curvature of flexibility changes can identify damages with both single and multiple locations. The optimization of bias and weight for neural network by fitness function of PSO algorithm can realize favorable damage severity identification and possesses more satisfactory accuracy than traditional BP network.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3