Study on Main Drugs and Drug Combinations of Patient-Controlled Analgesia Based on Text Mining

Author:

Jin Xing1ORCID,Wu Ying2

Affiliation:

1. Department of Anesthesiology, Shanxi Cancer Hospital, Taiyuan 030013, China

2. School of Humanities and Social Sciences, Shanxi Medical University, Taiyuan 030001, China

Abstract

In recent years, with the continuous understanding of pain knowledge and the continuous improvement of quality of life requirements, patient-controlled analgesia (PCA) has been widely used in a variety of pain patients. In this study, text mining technology was used to analyze relevant literature, try to find out the main drugs of PCA, classify the drugs, and dig out the important drug combination rules. PCA studies were retrieved from PubMed database in recent 10 years, and the bibliographic information of the literatures was taken as mining sample. First, the names of the drugs in the sample were identified by MetaMap package; then, Bicomb software was used to extract high-frequency drugs for the word frequency analysis and to construct a drug-sentence matrix. Finally, “hclust” package and “arules” package of R were used for the cluster analysis and association analysis of drugs. 39 main PCA drugs were screened out. Morphine, dexmedetomidine, and fentanyl were the top three drugs. Through cluster analysis, these drugs were divided into two clusters, one containing 26 common drugs and the other containing 13 core drugs. The association analysis of these drugs was carried out, and 22 frequent itemsets and 6 association rules were obtained. The maximum frequent 1-itemset was {Morphine} and the maximum frequent 2-itemset was {Morphine, Ropivacaine}. The research results have certain guidance and reference value for clinicians and researchers. In addition, it provides a way to study the relationship between drugs from the perspective of text mining.

Funder

Analysis on Scientific Collaboration and Trends Prediction of Research Fronts in Psychiatry Field

Publisher

Hindawi Limited

Subject

Anesthesiology and Pain Medicine,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3