A Strategy Based on Cooperative Transmission for Minimizing Delivery Delay in WSN

Author:

Yang Qingyu1,Yang Xinyu1,Wang Yu1,An Dou1

Affiliation:

1. School of Electronic and Information Engineering, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, Shaanxi 710049, China

Abstract

To achieve the purpose of energy conservation, various sleep scheduling approaches, such as duty cycle, are applied in wireless sensor networks (WSN). However, the duty-cycle mechanism results in data delivery latency, which is critical to monitor applications. To minimize the delay caused by sleeping nodes in the transmission path, we propose to “hop over” the sleeping nodes based on the range extension of cooperative transmission (CT). The transmission delay models for the random duty-cycled WSN and optimized fixed duty-cycled WSN under cooperative operation are formulated, and an algorithm named (delay-tolerant cooperative transmission DTCT) is presented for the selection of transmission modes to avoid waiting for the sleeping nodes to wake up. The energy consumption model under direct transmission (DT) and CT mode is also presented. Theoretical analysis shows that sleep latency can be greatly reduced in the cooperative scheme, and it is validated by simulations that it outperforms the traditional store-and-forward (DT) mode in delivery latency. Especially, CT reduces 67% and 14.3% of the transmission delay in random and optimized fixed low duty-cycled WSN, respectively, and DTCT algorithm saves energy by 11.29% in random low duty-cycled WSN.

Funder

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3