Ionospheric Clutter Model for HF Sky-Wave Path Propagation with an FMCW Source

Author:

Yang Xuguang12,Liu Aijun3ORCID,Yu Changjun3ORCID,Wang Linwei3

Affiliation:

1. Department of Electronic and Information Engineering, Harbin Institute of Technology, Harbin 150001, China

2. School of Information Engineering, Long Dong University, Gansu 745000, China

3. Department of Information and Communication Engineering, Harbin Institute of Technology (Weihai), Weihai 264209, China

Abstract

A theoretical model of the sky-wave path propagation with frequency modulated continuous wave (FMCW) source for high frequency (HF) radar is proposed in this paper. Based on the modeling of pulsed source, the expression of the received electric field with an FMCW source is derived for the reflection case from the ionospheric irregularities. Subsequently, the ionospheric reflection coefficient with different phase power spectrums for vertical and oblique backscattering propagation paths is incorporated into the ionospheric clutter model. Simulation results show that the peak power of FMCW in average is lower than that of pulsed waveform. Furthermore, different incident angles and magnetic field in mid-latitude can also influence the power density of the backscattering ionospheric clutter. Finally, the data analysis results from the high frequency surface wave radar (HFSWR) and Ionosonde collected in Yellow Sea preliminarily verify the inversion of the variance of the electron density fluctuation and the vertical drift velocity of the irregularities within ionosphere.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3