Application of Design Structure Matrix to Simulate Surgical Procedures and Predict Surgery Duration

Author:

Li Zhaoxuan1,Tate Derrick12,McGill Thomas3,Griswold John3,Chyu Ming-Chien12ORCID

Affiliation:

1. Healthcare Engineering Graduate Program, Lubbock, TX, USA

2. Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA

3. Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA

Abstract

Background. The complexities of surgery require an efficient and explicit method to evaluate and standardize surgical procedures. A reliable surgical evaluation tool will be able to serve various purposes such as development of surgery training programs and improvement of surgical skills. Objectives. (a) To develop a modeling framework based on integration of dexterity analysis and design structure matrix (DSM), to be generally applicable to predict total duration of a surgical procedure, and (b) to validate the model by comparing its results with laparoscopic cholecystectomy surgery protocol. Method. A modeling framework is developed through DSM, a tool used in engineering design, systems engineering and management, to hierarchically decompose and describe relationships among individual surgical activities. Individual decomposed activities are assumed to have uncertain parameters so that a rework probability is introduced. The simulation produces a distribution of the duration of the modeled procedure. A statistical approach is then taken to evaluate surgery duration through integrated numerical parameters. The modeling framework is applied for the first time to analyze a surgery; laparoscopic cholecystectomy, a common surgical procedure, is selected for the analysis. Results. The present simulation model is validated by comparing its results of predicted surgery duration with the standard laparoscopic cholecystectomy protocols from the Atlas of Minimally Invasive Surgery with 2.5% error and that from the Atlas of Pediatric Laparoscopy and Thoracoscopy with 4% error. Conclusion. The present model, developed based on dexterity analysis and DSM, demonstrates a validated capability of predicting laparoscopic cholecystectomy surgery duration. Future studies will explore its potential applications to other surgery procedures and in improving surgeons’ performance and training novices.

Funder

Texas Tech University

Publisher

Hindawi Limited

Subject

Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3