Performance Analysis of Vibration Sensors for Closed-Loop Feedback Health Monitoring of Mechanical Equipment

Author:

Xiao Yue1ORCID,Li Yan2ORCID,Chu Changbao1

Affiliation:

1. School of Mechanical Engineering, Nanchang Institute of Technology, Nanchang Jiangxi 330099, China

2. School of Information Engineering, Nanchang Institute of Technology, Nanchang Jiangxi 330099, China

Abstract

In this paper, we analyze the performance of mechanical equipment through a closed-loop feedback health monitoring vibration sensor, develop an OTDR optical signal reception and the processing module, and realize the reception, amplification, and filtering of the backscattered optical signal. In terms of vibration signal demodulation, the FPGA signal processing module was developed and debugged to realize the intermodulation with OTDR optical signal reception processing module and the preprocessing of the vibration data stream by taking advantage of the FPGA in parallel high-speed data stream processing. The objective function is constructed based on the dynamic data of the first four vertical frequencies of the modal recognition and the static data of the constant-load cable force of the inclined cable, and the third-order response surface method is applied to fit the response surface function of each correction target. The errors between the corrected FEM calculated values and the measured results are within 5%. The results were compared with the results of static and dynamic corrections, and the results showed that the joint static and dynamic corrections using the third-order response surface could obtain a finite element model that was more comprehensive and closer to the actual engineering response. A 180° feedback gain is set in the mass detection system to reduce the system’s equivalent mass and increase the system resonant frequency. An inverse lock-in amplifier is used instead of a high-frequency bandpass filter to spectrally migrate the useful frequencies and better filter out noise interference. A thin-film microresonant pressure sensor, a cantilever beam microresonant gas sensor, and a microresonant biosensor were designed and developed using the micromachining process. A closed-loop feedback method was used to design a low-frequency detection system, a medium-frequency detection system, and a high-frequency feedback detection based on a phase-locked loop system, completed open-loop and closed-loop detection experiments of the intrinsic frequency of the sensor, through-pressure experiments of the pressure sensor, low and medium frequency gas-sensitive experiments of the gas sensor, and high-frequency detection experiments of the biosensor oxygen absorption/deoxygenation, and measured the mass of individual oxygen molecules.

Funder

Natural Science Foundation of Jiangxi Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3