Phylogenetic Aspects of Antibiotic Resistance and Biofilm Formation of P. aeruginosa Isolated from Clinical Samples

Author:

Motevasel Maryam12ORCID,Haghkhah Masoud1ORCID,Azimzadeh Negar1ORCID

Affiliation:

1. Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran

2. Department of Laboratory Sciences, School of Paramedical Sciences, University of Medical Sciences, Shiraz, Iran

Abstract

Introduction. Biofilm production and drug resistance phenomenon play a critical role in P. aeruginosa infections. Several genes, including psl, pel, brlR, and mex, are involved in the phenomenon. The aim of this study was to find the relationship between the mentioned genes and the sources of P. aeruginosa infections. Materials and Methods. Fifty-nine P. aeruginosa isolates detected from clinical specimens were used to determine antibiotic susceptibility patterns, prevalence of the genes using PCR, biofilm formation, biofilm eradication concentration assay (MBEC), and epidemiological characteristics using pulsed-field gel electrophoresis (PFGE). Results. The results showed that 35.6% and 16.94% of all the samples were isolated from urine and wounds, 81.33% of the isolates were biofilm producers, 27.11% were multidrug-resistant (MDR), and 100% of the main biofilm former genes belonged to pslA. 94.91% of the isolates possessed brlR and mexA, and 91.5% of them expressed pslA. It was also indicated that neither ciprofloxacin nor imipenem could eradicate the formed biofilms. Moreover, we could identify 81.4% distinctive restriction profiles among the isolates, using an 80% similarity cutoff point; brlR and pel genes were significantly (P=0.032; P=0.044) related to phylogenetic pulsotypes. Comparison of the dendrogram in the isolates revealed that the detected isolates from urine were present in 12 different pulsotypes. Conclusion. It was found that there was a relationship between MDR, biofilm production, and brlR and pel genes among the isolates. It is distinguished there were similar genetic patterns between detected isolates from urine and could be concluded that the urinary tract played a critical role in maintaining and transferring biofilm drug-resistant genes of P. aeruginosa in clinical sites. The study highlights the importance of urine in distribution of clinical biofilm formation and drug-resistant P. aeruginosa isolates.

Funder

Shiraz University

Publisher

Hindawi Limited

Subject

Infectious Diseases,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3