Numerical Limit Load Analysis of 3D Pressure Vessel with Volume Defect Considering Creep Damage Behavior

Author:

Du Xianhe1,Liu Donghuan2,Liu Yinghua1

Affiliation:

1. School of Aerospace Engineering, AML, Tsinghua University, Beijing 100084, China

2. Department of Applied Mechanics, University of Science and Technology Beijing, Beijing 100083, China

Abstract

The limit load of 3D 2.25Cr-1Mo steel pressure vessel structures with volume defect at 873 K is numerically investigated in the present paper, and limit load under high temperature is defined as the load-carrying capacity after the structure serviced for a certain time. The Norton creep behavior with Kachanov-Robotnov damage law is implemented in ABAQUS with CREEP subroutine and USDFLD subroutine. Effect of dwell time to the material degradation of 2.25Cr-1Mo steel has been considered in this paper. 190 examples for the different sizes of volume defects of pressure vessels have been calculated. Numerical results showed the feasibility of the present numerical approach. It is found that the failure mode of the pressure vessel depends on the size of the volume defect and the service life of the pressure vessel structure at high temperature depends on the defect ratio seriously.

Funder

National Science Foundation for Distinguished Young Scholars of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3