Comparison and Analysis of the Influence of Different Data Transformation Methods on the Fault Identification of Flexible DC Transmission Lines by Convolutional Neural Network

Author:

Ding Can1ORCID,Wang Zhenyi1ORCID,Ding Qingchang1ORCID,Nie Taiping1ORCID

Affiliation:

1. College of Electrical Engineering & New Energy, China Three Gorges University, Yichang 443002, China

Abstract

In the fault classification and identification of flexible DC transmission lines, it is inevitable to use the voltage and current characteristics of the transmission line. All kinds of data transformation methods can highlight the hidden characteristics of the original fault electrical quantity. Various artificial intelligence algorithms can further reduce the difficulty of transmission line fault classification. For such fault classification methods, this paper first builds a four-terminal flexible direct current transmission system model on PSCAD/EMTDC platform and obtains data by simulating different faults of transmission lines. Then, empirical mode decomposition (EMD), wavelet transform (WT), fast Fourier transform (FFT), and variational mode decomposition (VMD) are performed on the obtained data, respectively. Finally, the transformed data and original data are used as inputs to classify by convolutional neural network (CNN). The influence of one data transformation method and different combinations of two data transformation methods on CNN classification results is explored. The simulation results show that when only one data transformation method is used, CNN has the best classification effect for the data after VMD transformation. The classification accuracy and recall rate are both increased from 96.9% and 96.3% without data transformation to 99.88%. When VMD and FFT are combined, CNN classification results’ accuracy and recall rate are further improved to 99.96%.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference27 articles.

1. A New Topology of Multilevel VSC Converter for a Hybrid HVDC Transmission System

2. Prospects of multilevel VSC technologies for power transmission;B. Gemmell

3. Operation, Control, and Applications of the Modular Multilevel Converter: A Review

4. Selective Nonunit Protection Technique for Multiterminal VSC-HVDC Grids

5. A dual reverse blocking sub-module based MMC with DC fault current blocking capability;B. Yang;Power System Protection and Control,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3