Development of a Risk Score Model for Osteosarcoma Based on DNA Methylation-Driven Differentially Expressed Genes

Author:

Kang Yuxiang12ORCID,Li Guowang2,Wang Guohua2,Huo Zhenxin2,Feng Xiangling3,Du Lilong1,Li Yongjin2,Yang Qiang1,Ma Xinlong1,Yu Bingbing45ORCID,Xu Baoshan1ORCID

Affiliation:

1. Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China

2. Graduate School of Tianjin Medical University, Tianjin, China

3. Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China

4. Department of Orthopedics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China

5. Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China

Abstract

Osteosarcoma (OS) is the commonest malignant bone tumor in adolescent patients, and patients face amputation, tumor metastasis, chemotherapy resistance, and even death. We investigated the potential connection between abnormal methylation differentially expressed genes and the survival rate of osteosarcoma patients. GSE36002 and GSE12865 datasets of GEO database were utilized for abnormal methylation differentially expressed genes, followed by function and pathway enrichment analyses, the protein-protein interaction network in the STRING database, and cluster analysis in the MCODE app of Cytoscape. The RNA-seq and clinical data from the TARGET-OS project of TCGA were used for univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses to predict the risk genes of osteosarcoma. 1191 hypermethylation-downregulated genes might function through plasma membrane, negative regulation of transcription from the RNA polymerase II promoter, and pathways, including transcriptional misregulation in cancer. 127 hypomethylation-upregulated genes were enriched in proteolysis, negative regulation of the canonical Wnt signaling pathway, and metabolic signaling pathways. The univariate Cox analysis revealed 638 genes ( P < 0.01 ), including 50 hypermethylation-downregulated genes and 4 hypomethylation-upregulated genes, subsequently based on LASSO Cox regression analysis for 54 aberrant methylation-driven genes, and three genes (COL13A1, MXI1, and TBRG1) were selected to construct the risk score model. The three genes (COL13A1, MXI1, and TBRG1) regulated by DNA methylation were identified to relate with the outcomes of OS patients, which might provide a new insight to the pathological mechanism of osteosarcoma.

Funder

Science and Technology Project of Tianjin Health Commission

Publisher

Hindawi Limited

Subject

Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3