Financial Big Data Management and Control and Artificial Intelligence Analysis Method Based on Data Mining Technology

Author:

Yang Ning1ORCID

Affiliation:

1. College of Finance and Accounting, Yellow River Conservancy Technical Institute, Kaifeng, 475004 Henan, China

Abstract

Driven by capital and Internet information (IT) technology, the operating scale and capital scale of modern industrial and commercial enterprises and various organizations have increased exponentially. At present, the manual-based financial work model has been unable to adapt to the changing speed of the modern business environment and the business rhythm of enterprises. All kinds of enterprises and organizations, especially large enterprises, urgently need to improve the operational efficiency of financial systems. By enhancing the integrity, timeliness, and synergy of financial information, it improves the comprehensiveness and ability of analyzing complex problems in financial analysis. It can cope with such rapid changes and help improve the financial management capabilities of enterprises. It provides more valuable decision-making guidance for business operations and reduces business risks. In recent years, the vigorous development of artificial intelligence technology has provided a feasible solution to meet the urgent needs of enterprises. Combining data mining, deep learning, image recognition, natural language processing, knowledge graph, human-computer interaction, intelligent decision-making, and other artificial intelligence technologies with IT technology to transform financial processes, it can significantly reduce the processing time of repetitive basic financial processes, reduce the dependence on manual accounting processing, and improve the work efficiency of the financial department. Through the autonomous analysis and decision-making of artificial intelligence, the intelligentization of financial management is realized, and more accurate and effective financial decision-making support is provided for enterprises. This paper studies the company’s intelligent financial reengineering process, so as to provide reference and reference for other enterprises to upgrade similar financial systems. The results of the analysis showed that at the level of α = 0.05 , there was a significant difference in the mean between the two populations. When the r value is in the range of -1 and 1, the linear relationship between the x and y variables is more obvious. This paper proposes decision-making suggestions and risk control early warning to the group decision-making body, or evaluates the financial impact of the group’s decision-making, and opens the road to financial intelligence.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference30 articles.

1. Mobile Payment and Mobile Application (App) Behavior for Online Recommendations

2. Cultural intelligence as education contents: exploring the pedagogical aspects of effective functioning in higher education;J. Y. Hong,2019

3. Information security in big data: privacy and data mining;L. Xu;IEEE Access,2017

4. A novel approach for breast cancer detection using data mining techniques;V. Chaurasia;Social Science Electronic Publishing,2017

5. Fundamental Analysis and the Cross-Section of Stock Returns: A Data-Mining Approach

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3