Cognitive-Enhancing, Ex Vivo Antilipid Peroxidation and Qualitative Phytochemical Evaluation of the Aqueous and Methanolic Stem Bark Extracts of Lonchocarpus eriocalyx (Harms.)

Author:

Moriasi Gervason12ORCID,Ireri Anthony3ORCID,Ngugi Mathew1ORCID

Affiliation:

1. Kenyatta University, Department of Biochemistry Microbiology and Biotechnology, P.O. Box 43844-00100, Nairobi, Kenya

2. Mount Kenya University, Department of Medical Biochemistry, P.O. Box 342-01000, Thika, Kenya

3. Kenyatta University, Department of Educational Psychology, P.O. Box 43844-00100, Nairobi, Kenya

Abstract

Over 50 million persons are living with cognitive deficits worldwide, with over 80% of these individuals living in the developing world. The number of affected persons is projected to go over 152 million by the year 2050. Current drugs used for cognitive impairment are debatably ineffective, costly, inaccessible, and associated with undesirable events that call for the search for alternative and complementary approaches. Plants are arguably affordable, accessible, and efficacious. However, despite the reported healing claims, scientific data validating these claims are lacking. L. eriocalyx is traditionally used for the management of various conditions, including cognitive impairment but has not been scientifically explored. In this study, the Morris Water Maze (MWM) method was used to evaluate in vivo cognitive-enhancing effects of studied extracts of L. eriocalyx. Furthermore, following MWM experiments, brains were dissected and processed, and malondialdehyde profiles were determined. Qualitative phytochemical profiles of the studied plant extracts were also determined. The results showed that mice that were treated with the studied plant extracts took significantly shorter transfer latencies, navigation distances, and significantly longer latencies in the target quadrant (NW) (p<0.05) compared with the negative control mice, indicating cognitive-enhancing activities. Furthermore, cognitively impaired mice that received the studied plant extracts had significantly lower MDA profiles compared with the MDA profile of the negative control group mice (p<0.05). The cognitive-enhancing and MDA profile lowering effects were attributed to the presence of antioxidant phytoconstituents that ought to have modulated the redox state, thereby attenuating brain damage. These extracts can be, therefore, used for the management of cognitive deficits. Further studies leading to isolation and characterization of active molecules for cognitive impairment are recommended. Furthermore, the precise mechanism(s) through which these extracts exert their pharmacologic activity should be established.

Publisher

Hindawi Limited

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3