The Approach to Carbon Emission Quotas of Road Transportation: A Carbon Emission Intensity Perspective

Author:

Li Xiao12ORCID,Gao Li1ORCID,Liu Jintao3ORCID

Affiliation:

1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

2. Research Institute of Highway Ministry of Transport, Beijing 100088, China

3. National Research Center of Railway Safety Assessment, Beijing Jiaotong University, Beijing 100044, China

Abstract

Carbon trading is an effective measure for the road transportation to reduce energy consumption and carbon emissions. Carbon emission quotas are the primary concern to ensuring the efficiency of carbon trading. However, the existing studies have mostly focused on carbon emission quotas in different regions, i.e., countries and provinces. Few literature studies simulate carbon quota allocation in the road transportation. A novel approach from the perspective of carbon emission intensity of vehicle is proposed, on the basis of data envelopment analysis (DEA) model. Unlike other studies, the idea of allocation of baseline excitation is introduced and the intensity is included in the model as the baseline. Firstly, the Delphi method is employed to select input and output indicators. Secondly, carbon emission intensity is determined by the cumulative distribution function (CDF). Furthermore, the carbon emission quotas in road transportation in 30 provinces of China are used to validate the model. The results show that (1) the carbon emission intensity of commercial trucks and buses in China’s road transport industry is 75.04 g/t·km and 13.12 g/p·km, respectively; (2) the provinces of Shanghai, Guangdong, and Xinjiang have the greatest carbon reduction potential and Henan, Hunan, and Anhui have the largest increase in emission quotas; (3) compared with traditional “history responsibility” and “baseline” methods, the proposed approach increases allocation efficiency by 19% and 14%, respectively; and (4) the approach can make the carbon emission quotas play the role of incentive while taking fairness into account and can more effectively promote the implementation of carbon trading system in road transportation.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3