Potato Quality Grading Based on Depth Imaging and Convolutional Neural Network

Author:

Su Qinghua12ORCID,Kondo Naoshi2,Al Riza Dimas Firmanda2,Habaragamuwa Harshana2

Affiliation:

1. Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science & Technology University, Beijing, China

2. Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho Sakyo-ku, Kyoto, Japan

Abstract

As a cost-effective and nondestructive detection method, the machine vision technology has been widely applied in the detection of potato defects. Recently, the depth camera which supports range sensing has been used for potato surface defect detection, such as bumps and hollows. In this study, we developed a potato automatic grading system that uses a depth imaging system as a data collector and applies a machine learning system for potato quality grading. The depth imaging system collects 3D potato surface thickness distribution data and stores depth images for the training and validation of the machine learning system. The machine learning system, which is composed of a softmax regression model and a convolutional neural network model, can grade a potato tube into six different quality levels based on tube appearance and size. The experimental results indicate that the softmax regression model has a high accuracy in sample size detection, with a 94.4% success rate, but a low success rate in appearance classification (only 14.5% for the lowest group). The convolutional neural network model, however, achieved a high success rate not only in size classification, at 94.5%, but also in appearance classification, at 91.6%, and the overall quality grading accuracy was 86.6%. The quality grading based on the depth imaging technology shows its potential and advantages in nondestructive postharvesting research, especially for 3D surface shape-related fields.

Funder

Beijing Information Science and Technology University

Publisher

Hindawi Limited

Subject

Safety, Risk, Reliability and Quality,Food Science

Reference56 articles.

1. Food and Agriculture Organization Statistics;FAO,2004

2. In-line sorting of irregular potatoes by using automated computer-based machine vision system

3. Development of rotating screen grader for selected orchard crops;D. S. Narvankar;Journal of Agricultural Engineering,2005

4. A real-time mathematical computer method for potato inspection using machine vision

5. PC-based machine vision system for real-time computer-aided potato inspection

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3