Improving the Performance of Whale Optimization Algorithm through OpenCL-Based FPGA Accelerator

Author:

Jiang Qiangqiang1,Guo Yuanjun1ORCID,Yang Zhile1ORCID,Wang Zheng1ORCID,Yang Dongsheng2,Zhou Xianyu2

Affiliation:

1. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China

2. Intelligent Electrical Science and Technology Research Institute, Northeastern University, Shenyang 110819, China

Abstract

Whale optimization algorithm (WOA), known as a novel nature-inspired swarm optimization algorithm, demonstrates superiority in handling global continuous optimization problems. However, its performance deteriorates when applied to large-scale complex problems due to rapidly increasing execution time required for huge computational tasks. Based on interactions within the population, WOA is naturally amenable to parallelism, prompting an effective approach to mitigate the drawbacks of sequential WOA. In this paper, field programmable gate array (FPGA) is used as an accelerator, of which the high-level synthesis utilizes open computing language (OpenCL) as a general programming paradigm for heterogeneous System-on-Chip. With above platform, a novel parallel framework of WOA named PWOA is presented. The proposed framework comprises two feasible parallel models called partial parallel and all-FPGA parallel, respectively. Experiments are conducted by performing WOA on CPU and PWOA on OpenCL-based FPGA heterogeneous platform, to solve ten well-known benchmark functions. Meanwhile, other two classic algorithms including particle swarm optimization (PSO) and competitive swarm optimizer (CSO) are adopted for comparison. Numerical results show that the proposed approach achieves a promising computational performance coupled with efficient optimization on relatively large-scale complex problems.

Funder

National Key Research and Development Project

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3