Intrusion Detection into Cloud-Fog-Based IoT Networks Using Game Theory

Author:

Pirozmand Poria1ORCID,Ghafary Mohsen Angoraj2ORCID,Siadat Safieh2ORCID,Ren Jiankang3ORCID

Affiliation:

1. School of Computer and Software, Dalian Neusoft University of Information, Dalian 116023, China

2. Department of Computer Engineering and Information Technology, Payame Noor University (PNU), P.O. Box 19395-4697 Tehran, Iran

3. School of Computer Science and Technology, Dalian University of Technology, China

Abstract

The Internet of Things is an emerging technology that integrates the Internet and physical smart objects. This technology currently is used in many areas of human life, including education, agriculture, medicine, military and industrial processes, and trade. Integrating real-world objects with the Internet can pose security threats to many of our day-to-day activities. Intrusion detection systems (IDS) can be used in this technology as one of the security methods. In intrusion detection systems, early and correct detection (with high accuracy) of intrusions is considered very important. In this research, game theory is used to develop the performance of intrusion detection systems. In the proposed method, the attacker infiltration mode and the behavior of the intrusion detection system as a two-player and nonparticipatory dynamic game are completely analyzed and Nash equilibrium solution is used to create specific subgames. During the simulation performed using MATLAB software, various parameters were examined using the definitions of game theory and Nash equilibrium to extract the parameters that had the most accurate detection results. The results obtained from the simulation of the proposed method showed that the use of intrusion detection systems in the Internet of Things based on cloud-fog can be very effective in identifying attacks with the least amount of errors in this network.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3