Origin-Destination-Based Travel Time Reliability under Different Rainfall Intensities: An Investigation Using Open-Source Data

Author:

Zhang Qi1ORCID,Chen Hong1ORCID,Liu Hongchao2ORCID,Li Wei3ORCID,Zhang Yibin2ORCID

Affiliation:

1. College of Transportation Engineering, Chang’an University, Xi’an 710000, China

2. Department of Civil, Construction and Environmental Engineering, Texas Tech University, Lubbock, TX 79409, USA

3. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

Abstract

Origin-destination- (O-D-) based travel time reliability (TTR) is fundamental to next-generation navigation tools aiming to provide both travel time and reliability information. While previous works are mostly focused on route-based TTR and use either ad hoc data or simulation in the analyses, this study uses open-source Uber Movement and Weather Underground data to systematically analyze the impact of rainfall intensity on O-D-based travel time reliability. The authors classified three years of travel time data in downtown Boston into one hundred origin-destination pairs and integrated them with the weather data (rain). A lognormal mixture model was applied to fit travel time distributions and calculate the buffer index. The median, trimmed mean, interquartile range, and one-way analysis of variance were used for quantification of the characteristics. The study found some results that tended to agree with the previous findings in the literature, such that, in general, rain reduces the O-D-based travel time reliability, and some seemed to be unique and worthy of discussion: firstly, although in general the reduction in travel time reliability gets larger as the intensity of rainfall increases, it appears that the change is more significant when rainfall intensity changes from light to moderate but becomes fairly marginal when it changes from normal to light or from moderate to extremely intensive; secondly, regardless of normal or rainy weather, the O-D-based travel time reliability and its consistency in different O-D pairs with similar average travel time always tend to improve along with the increase of average travel time. In addition to the technical findings, this study also contributes to the state of the art by promoting the application of real-world and publicly available data in TTR analyses.

Funder

Technology Project of Shaanxi Transportation Department

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mobility Tableau: Human Mobility Similarity Measurement for City Dynamics;IEEE Transactions on Intelligent Transportation Systems;2023-07

2. Quality assessment for big mobility data;Handbook of Mobility Data Mining;2023

3. Modeling conditional dependencies for bus travel time estimation;Physica A: Statistical Mechanics and its Applications;2022-04

4. Travel similarity estimation and clustering;Big Data and Mobility as a Service;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3