Electroacupuncture on Trigeminal Nerve-Innervated Acupoints Ameliorates Poststroke Cognitive Impairment in Rats with Middle Cerebral Artery Occlusion: Involvement of Neuroprotection and Synaptic Plasticity

Author:

Zheng Yu1,Qin Zongshi1,Tsoi Bun1,Shen Jiangang1,Zhang Zhang-Jin12ORCID

Affiliation:

1. School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China

2. Department of Chinese Medicine, The University of Hong Kong Shenzhen Hospital (HKU-SZH), Shenzhen, Guangdong 518053, China

Abstract

Poststroke cognitive impairment (PSCI) is a severe sequela of stroke. There are no effective therapeutic options for it. In this study, we evaluated whether electroacupuncture (EA) on the trigeminal nerve-innervated acupoints could alleviate PSCI and identified the mechanisms in an animal model. The male Sprague-Dawley rat middle cerebral artery occlusion (MCAO) model was used in our study. EA was conducted on the two scalp acupoints, EX-HN3 (Yintang) and GV20 (Baihui), innervated by the trigeminal nerve, for 14 sessions, daily. Morris water maze and novel object recognition were used to evaluate the animal’s cognitive performance. Neuroprotection and synaptic plasticity biomarkers were analyzed in brain tissues. Ischemia-reperfusion (I/R) injury significantly impaired spatial and cognition memory, while EA obviously reversed cognitive deterioration to the control level in the two cognitive paradigms. Moreover, EA reversed the I/R injury-induced decrease of brain-derived neurotrophic factor, tyrosine kinase B, N-methyl-D-aspartic acid receptor 1, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor, γ-aminobutyric acid type A receptors, Ca2+/calmodulin-dependent protein kinase II, neuronal nuclei, and postsynaptic density protein 95 expression in the prefrontal cortex and hippocampus. These results suggest that EA on the trigeminal nerve-innervated acupoints is an effective therapy for PSCI, in association with mediating neuroprotection and synaptic plasticity in related brain regions in the MCAO rat model.

Funder

General Research Fund (GRF) of Research Grant Council of HKSAR

Publisher

Hindawi Limited

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3